
Web-based Hpa-an City Telephone Directory by implementing B-tree

Database

Nyo Lay Myint, Soe Hay Mar

Computer University, Hpa-an, Myanmar

nyolaymyint2010@gmail.com

Abstract

A directory is an essential part of people’s lives

today. By accessing static directories like the paper

phone books, people can easily find out phone

numbers of other people, shops, organizations etc.

But, all information in the paper directories is static

and does not change in real time. So, conventional

applications and paper works were instituting with

web-based application. Online directory is necessary

for modern lifestyle and have the capacity to be

much more up-to-date. And, more amount of

information can be added to an online directory like

the organization, department in which that person

works or the location of his/her office etc.

In computer science, b-tree is a tree data

structure that keeps data sorted, allows search,

insertion, deletion and sequential access in

logarithmic amortized time and the special thing

about B-trees is that they are designed for really

huge indexed databases. The system build web-based

telephone directory of Hpa-an (local city of

Myanmar) by implementing B-tree database. B-tree

results are shown as according to b-tree’s operations

(searching, inserting, and deleting) with user’s

wanted information. There will be b-tree’s operation

time, b-tree’s traveled nodes, and size of b-tree in b-

tree results. And, apache tomcat 6.0.26 server is used

as web service in the system.

1. Introduction

B-tree is a balanced multi-way search tree

designed to work well on disks. The B-tree’s

creators, Rudolf Bayer and Ed McCreight, have not

explained what the B-stands for. The most common

belief is that B-stands for balanced, as all the leaf

nodes are at the same level in the tree. B may also

stand for Bayer, or for Boeing, because they are

working for Boeing Scientific Research Labs at this

time [8, 9]. B-Trees are not binary trees: each node

can have many children. Each node of a B-tree

potentially contains several keys, not just one. When

doing searches, we decide which child link to follow

by finding the correct interval of our search key in the

key set of the current node [1, 5]. It can give efficient

insert and delete at the expense of some space

overhead. It must be ensured that searching and

processing are efficient in terms of memory space

and computation time [3]. B-trees are the basis for

many commercial database systems and optimized

for using minimum number of disk operations for

large data structures. But in general, anytime an

application needs an index, B-trees offer an efficient

data structure to use [9, 10].

There is no web based Hpa-an city telephone

directory in my city. So, the system will construct the

telephone directory that can provide both of phone

number and related information for Hpa-an by

implementing B-tree database.

2. Data Structure of B-tree

B-trees are trees like data structures most

commonly used in databases and file systems. An

index is a feature in a database that allows quick

access to the rows in a table. An index is created

using one or more columns of the table. Indexes are

often optimized for quick searches, usually via

balanced tree.

A B-tree index is usually created on columns

which contain mostly unique values. A B-tree index

is most effective when a query retrieves less than

twenty percent of rows in a table. B-tree contains

following different types of nodes [6, 9]:

One root node: A node that contains node pointed

to branch nodes.

Two or more branch nodes: Branch node contain

pointer to leaf nodes or other branch nodes.

Many leaf nodes: A leaf node contains index

items and horizontal pointers to other leaf nodes.

mailto:nyolaymyint2010@gmail.com

 Figure 1.Architecture of B-tree

A database is a collection of data organized in a

fashion that facilitates updating, retrieving, and

maintaining the data. Database products like

Microsoft SQL Server, Sybase Adaptive Server, IBM

DB2, and Oracle serve as a foundation for accounting

systems, inventory systems, medical record keeping

systems, airline reservation systems, and countless

other important aspects of modern business [5].

It is not uncommon for a database to contain

millions of records requiring many gigabytes of

storage. For examples, TELSTRA, an Australian

telecommunication company, maintains a customer

billing database with 51 billion rows, and 4.2

terabytes of data. In order for a database to be useful

and usable, it must support the desired operation,

such as retrieval and storage quickly. B-tree is a good

way to do this [2, 5].

Because databases cannot typically be maintained

entirely in memory, b-trees are often used to index

the data and to provide fast access. If the same data is

indexed with a b-tree of minimum degree 10, 114

comparisons will be required in the worst case.

Clearly, indexing large amount of data can

significantly improve search performance. Although

other balanced tree structures can be used, a b tree

also optimizes costly disk accesses that are of

concern when dealing with large data sets. B-tree

offer database implementation for indexes. For

instance Oracle, Berkeley and MYSQL, use B trees

for indexes.

3. Background Theory

If data is added or deleted in a tree structure,

leaves randomly develop and the operation efficiency

will decrease. A tree structure capable of

reorganizing itself is called a balanced multi-way

search tree (B-tree). B tree is a further developed

version of a binary tree. Unlike a binary tree, each

node of a b-tree may have a variable number of keys

and children. The keys are stored in non-decreasing

order. Each key has an associated child that is the

root of a subtree containing all nodes with keys less

than or equal to the key but greater than the

preceding key. A node also has an additional

rightmost child that is the root for a subtree

containing all keys greater than any keys in the node

[5, 10].

A b-tree has a minimum number of allowable

children for each node known as minimization factor.

With a large branching factor m, the height of a B-

tree is low resulting in fewer disk accesses. The

branching factor can be chosen such that a node

reference corresponds to a block of secondary

memory. B-trees usually keep related records on the

same block. Again this results in fewer disk accesses.

A B-tree of order m is an m-way tree (i.e., a tree

where each node may have up to m children) in

which [2]:

1. The number of keys in each non-leaf node is

one less than the number of its children and these

keys partition the keys in the children in the

fashion of a search tree.

2. All leaves are on the same level.

3. All non-leaf nodes except the root have at

least  2/m – 1 keys.

4. The root is either a leaf node, or it has from

two to m children.

5. A leaf node contains no more than m – 1 keys,

the number m should always be odd.

Figure 2.Schema showing the B-tree

Structure

4. B-tree’s Algorithms

B-Tree-Search(x, k)

i <- 1

while i <= n[x] and k > keyi[x]

do i <- i + 1

if i <= n[x] and k = keyi[x]

then return (x, i)

if leaf[x]

then return NIL

else Disk-Read(ci[x])

return B-Tree-Search (ci[x], k)

The search operation on a b-tree is analogous to

a search on a binary tree. Instead of choosing

between a left and a right child as in a binary tree, a

b-tree search must make an n-way choice. The

correct child is chosen by performing a linear search

of the values in the node. After finding the value

greater than or equal to the desired value, the child

pointer to the immediate left of that value is followed.

If all values are less than the desired value, the

rightmost child pointer is followed. Of course, the

search can be terminated as soon as the desired node

is found.

B-Tree-Insert (T, k)

r <- root[T]

if n[r] = 2t - 1

 then s <- Allocate-Node()

 root[T] <- s

 leaf[s] <- FALSE

 n[s] <- 0

 c1 <- r

 B-Tree-Split-Child(s, 1, r)

 B-Tree-Insert-Nonfull(s, k)

 else B-Tree-Insert-Nonfull(r, k)

All insertions start at a leaf node. To insert a new

element, search the tree to find the leaf node where

the new element should be added. Insert the new

element into that node with the following steps:

(1) If the node contains fewer than the maximum

legal number of elements, then there is room for

the new element. Insert the new element in the

node, keeping the node's elements ordered.

Otherwise the node is full, so evenly split it into

two nodes.

(2) A single median is chosen from among the

leaf's elements and the new element.

(3)Values less than the median are put in the new

left node and values greater than the median are

put in the new right node, with the median acting

as a separation value.

(4)Insert the separation value in the node's

parent, which may cause it to be split, and so on.

If the node has no parent (i.e., the node was the

root), create a new root above this node

(increasing the height of the tree).

B-Tree-Delete(x, k)

if x is a leaf then

if k is in x then

delete k from x and return true

else return false

else

if k is in x then

y = the child of x that precedes k

if y has at least t keys then

k' = the predecessor of k (use B-Tree-FindLargest)

Copy k' over k

B-Tree-Delete(y, k')

else

z = the child of x that follows k

if z has at least t keys then

k' = the successor of k

Copy k' over k

B-Tree-Delete (z, k')

else

merge k and all of z into y

B-Tree-Delete(y, k)

else //k is not in internal node x.

ci[x] points to the root, c, of the subtree that could

contain k.

if c has t-1 keys then

if c has an immediate left/right sibling, z, with t or

more keys then

Let k1 be the key in x that precedes/follows c.

Move k1 into c as the first/last key in c.

Let k2 be the last/first key in the immediate left/right

sibling, z.

Replace k1 in x with k2 from z (i.e., move k2 up into

x).

Move the last/first child subtree of z to be the

first/last child subtree of c.

else

merge c with one of its immediate siblings and

make the appropriate key of x the middle key of the

new node, c.

B-Tree-Delete(c, k)

To delete a key, first perform the usual search

operation to locate the node containing the key. (If

the key isn't found, it isn't in the tree and can't be

deleted.). If the value is in a leaf node, it can simply

be deleted from the node. If underflow happens,

check siblings to either transfer a key or fuse the

siblings together. If deletion happened from right

child retrieve the max value of left child if there is no

underflow in left child in vice-versa situation

retrieves the min element from right.

5. Implementation of Web-based Hpa-an

Telephone Directory

This is applying web services from online

telephone directory web site. In the system, the b-tree

database stores about 1536; total records of Hpa-an

telephone information. The related information

(phone number, name, business category, and

address) can be searched as according to user’s

searching key (by phone number, by name, or by

business category) and b-tree’s operation results are

shown with these related information in the system.

There will be b-tree’s traveled nodes, b-tree’s

operation time and size of b-tree in operation results.

Administrator is responsible for updating

information that he or she wanted. In this system,

administrator is authorized person who is permitted

to hold this telephone directory database. And more

city phone code of our country can be found in Hpa-

an web-based telephone directory.

Figure 3.System Flow Diagram

6. Experimental Results

The number of nodes we need to access during a

search for a record with a given key value is equal to

the height of the tree plus one. Time efficiency

depends on the height (h) of the tree.

The root is either a leaf or has between 2 and m

children. A leaf has between 1 and m-1 entries or

keys. Each node, except the root and the leaves, has

between  2/m and m children and keys between

 2/m -1and m-1. The root of the tree will contain,

at least, one key. So, finding the smallest number of

keys a B-tree of order m and height h can have:

Level (1): It will have at least two nodes with at least

 2/m – 1 keys in each of them, for the total

minimum number of keys 2( 2/m -1).

Level (2): It will have at least 2  2/m nodes (the

children of the nodes at level 1) with at

least  2/m – 1 in each of them, for the total

minimum number of keys 2  2/m ( 2/m -1).

In general, the nodes at the level i, will contain at

least 2     12/2/
1




mm
i

keys. Finally, level h,

the leaf level, will have at least 2  
1

2/
h

m . Thus,

the minimum number of nodes and height are

following:

n ≥ 1 +       
1

1

2/212/2/2





h

i

mmm

n ≥ 4   12/
1


h
m

h ≥
 

1
4

1
log 2/ 







 n
m

Figure 4.Result of searching time, traveled nodes

and size of B-tree

 In the figure, b-tree results are shown as

according to b-tree’s operations (searching, inserting,

and deleting) with user’s wanted information (phone

number, name, business category and address). There

will be b-tree’s operation time, b-tree’s traveled

nodes, and size of b-tree in b-tree results. B-tree’s

traveled nodes show that how many nodes are

traveled to find a target key.

Start

Search?

Search Key
(B-tree searching)

More?

End

Log In Process

Correct
Password?

Insert or

edit?

Inserting
process

Editing
Process

Telephone

Directory DB by
using B-Tree

No

No Yes

Yes

No

Insert

Yes

Update or

delete?
Updating process

Delete
Update

Choose the key of
searching

Display the
information

Edit

Deleting process

7. Conclusion

The payoff of the B-tree insert and delete rules

are that B-trees are always “balanced”. So, B-tree

data representation methods are very useful for

storing and searching huge amounts of data. It needs

comparatively small memory space and less

computation time because of B-tree disk-based

storage structure. In many database and file systems,

b-tree is an efficient, useful and versatile. Moreover,

our system will also provide the web-based user

interface to be quick exploit the local Hpa-an

telephone number and related information.

In the system, the database stores about 1536;

total records of Hpa-an telephone information. As

limitation, the system implements telephone directory

database only Hpa-an record, not include Kayin state.

So, as further extension, the system can be extensible

to Kayin State phone directory.

8. References

[1] A. Kaltenbrunner, L. Kellis & D. Mart´ı 1, B-trees.

[2] Bayer, R., M. Schkolnick, “Concurrency of Operations

on B-Trees. In Readings in Database Systems”, (ed.

Michael Stonebraker), pages 216-226, 1994.

[3] Benoit Maréchal, RAQUEL B-tree File Stack – B-tree

Introduction, 21 May 2007.

[4] D.Comer, “The Ubiquitous B-Tree”, Computer

Science Department, Purdue University, West Lafayette,

Indiana 47907. Computing Surveys, Vol 11, No2, June

1979.

[5] Peter Neubauer, B-trees: Balanced Tree Data

Structures.

[6] Ruchir Babbar, Database Management, B-Tree

(Balanced Tree), Research Paper.

[7] The Perl Journal, Bricolage: B-Trees.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms,

Second Edition. MIT Press and McGraw-Hill, 2001.

[9] http://en.wikipedia.org/wiki/Btree

[10] http://en.wikipedia.org/wiki/Data_structure

[11] http://mattfleming.com/node/192

[12] http://topic.asp.htm

[13] http://www.forums.sum.com/thread.jspa.htm

[14] http://www.articlesOf-Online-White-Pages-

hone-directory/1425901#ixzz0xsD87e18 under

Creative Common License.

http://en.wikipedia.org/wiki/Btree
http://en.wikipedia.org/wiki/Data_structure
http://mattfleming.com/node/192
http://topic.asp.htm/
http://www.forums.sum.com/thread.jspa.htm
http://www.articlesof-online-white-pages-hone-directory/1425901#ixzz0xsD87e18
http://www.articlesof-online-white-pages-hone-directory/1425901#ixzz0xsD87e18

